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Abstract: This study is to establish quantitative features of vascular geometry in optical 
coherence tomography angiography (OCTA) and validate them for the objective classification 
of diabetic retinopathy (DR). Six geometric features, including total vessel branching angle 
(VBA: θ), child branching angles (CBAs: α1 and α2), vessel branching coefficient (VBC), 
and children-to-parent vessel width ratios (VWR1 and VWR2), were automatically derived 
from each vessel branch in OCTA. Comparative analysis of heathy control, diabetes with no 
DR (NoDR), and non-proliferative DR (NPDR) was conducted. Our study reveals four 
quantitative OCTA features to produce robust DR detection and staging classification: 
(ANOVA, P<0.05), VBA, CBA1, VBC, and VWR1. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Diabetic retinopathy (DR), a major microvascular complication of diabetes mellitus (DM) and 
a preventable blindness around the world [1], is predicted to significantly increase in 
prevalence worldwide. By the year 2030, the number of people diagnosed with DM is 
predicted to reach 552 million [2] and nearly 45% of DM patients may develop DR associated 
vision impairment [1]. Early detection of DR is paramount to prevention of progression and 
essential to prevent vision loss [2]. 

According to Murray’s principle [3], the retinal vascular network and its branching pattern 
develop in such a way that the shear stress and energy required for efficient blood flow (and 
oxygen) across the system are minimized. Any alteration from an optimal branching network 
in the retina will result in increased shear stress, impaired microcirculatory support, and 
reduced efficiency of the blood-oxygen flow, increasing the risk of vascular damage [4]. The 
functional impairment caused by DM leads to such alterations in blood flow and in the vessel 
wall structures which in turn affect the endothelium and blood retinal barriers [5,6]. These 
changes are believed to affect the vascular geometry of the retina, even before mild non-
proliferative DR (NPDR) is detectable. Therefore, geometric features for quantifying retinal 
vascular abnormalities hold promise to identify very early diabetic retinopathy as well as 
progression of DR. As these features are non-dimensional, the effects of optical artifacts, 
refractive errors, and variation of image resolutions are minimized. 

Several recent studies have explored geometric biomarkers in the retina for evaluating DR 
[7–14] and other systemic complications [15]. However, the investigated features were 
somewhat limited and did not provide indications on how the geometry of retinal vasculature 
changed within each patient during DR progression [16,17]. Additionally, the process of 
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a fully automated algorithm. These features can be divided into two subcategories, vessel 
angle-based and vessel width-based geometric features. 

Vessel angle-based features measure the degree of bifurcation and relative angle change 
among the parent and child vessel branches. The first feature is vessel branching angle (VBA: 
θ), which measures the overall degree of bifurcation between the child branches. The second 
and third features are the child branching angle 1 (CBA1: α1) and child branching angle 2 
(CBA2: α2), which measures the direction of branching of each child vessel. The child angles 
can provide information relating to the deviation of direction of child vessels with respect to 
the original parent vessel direction. 

Vessel width-based features measure the structural change of the vessels as a result of 
branching. The first vessel-width feature is vessel branching coefficient (VBC), which 
measures the effect of branching on vessel area between the parent, first (larger) child, and 
second (smaller) child. Similarly, the second and third vessel-width features are vessel width 
ratio 1 (VWR1) and width ratio 2 (VWR2), which examines the change in width between 
individual child and parent vessels. 

2.3.1 Branching triangle identification 

In this step, the processed vessel map is used to extract the vessel skeleton, branch points, and 
end points. Figure 2(B) illustrates the steps for locating branch points and corresponding 
endpoints. Figure 2(B1) is one branch point from Fig. 2(A4) (marked by the yellow rectangle 
in Fig. 2(A5)). 

First, the vessel skeleton map is extracted from the processed vessel map. Next, the vessel 
branchpoints are determined from the vessel skeleton using morphological functions (Fig. 
2(B1)). The branchpoints indicate where vessel branching occurs. Furthermore, we can utilize 
the branchpoints to create a mask to extract the region of interest (Fig. 2(B2)). In this study, 
the region of interest is referred to as branch triangles. The method of masking starts by 
dilating each branchpoint. Based on empirical trials, a dilation radius of 5 pixels is large 
enough to encompass the region of interest, and small enough to not overlap with adjacent 
branchpoints. The newly created mask is then multiplied with the skeleton map to generate an 
image containing the individual branch triangles. The branch triangle visualization is 
referenced as the colored pixels in Fig. 2(B2). In the last step the endpoints of each branch 
triangles are extracted into a separate image (Fig. 2(B3)). The preprocessing and branch 
triangle identification steps results in four images, i.e., the processed vessels, vessel skeleton, 
branchpoints, and endpoints, used for following feature measurement. 

2.3.2 Quantification of features 

The inputs into the fully automated algorithm are the processed vessel, vessel skeleton, 
branchpoint, and endpoint images. The algorithm is illustrated in Fig. 1(b) and runs iteratively 
for each branchpoint in the image. The algorithm is designed to quantify each branchpoint 
with exactly 3 endpoints. For the point that is crossed by two large vessels, the corresponding 
number of endpoints will be 4, and therefore is excluded from quantitative branchpoint 
analysis. 

For a branchpoint, the first step is the branch triangle endpoint identification by a window 
method illustrated in Fig. 2(B3). For this process, the window area is centered at the 
branchpoint, and the window is a square whose width is 15 pixels. The width size is 
dependent on the dilation radius used in the branch triangle identification step. If the window 
is too small, then none of the endpoints would be detected. Similarly, if the width is too large, 
then the endpoints of other branches would be detected. The window method records the 
coordinates of each endpoint of the branch triangles. 

Next the recorded coordinates of the endpoints and branchpoints are used to create vectors 
of the vessels, resulting in a set of parent and two child vectors. From these three vectors, 
three angles, A and B (Fig. 2(C1)), and θ (Fig. 2(C2)) are quantified (Fig. 1(b)). Based on the 
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physiology of vessel branching, the smallest one of these three angles is the VBA (θ). Using 
geometric identities, CBA1 (α1) and CBA2 (α2) are calculated from angle B and A, 
respectively, of the vessel, where CBA1 is larger than CBA2. We can then use the calculated 
angles (θ, α1, α2) to identify the parent and child vessels. The two vectors/endpoints that form 
the branching angle are identified as the child vessels, and the remaining vector/endpoint 
identifies the parent vessel. 

By identifying the parent and child vessels, the width of each vessel is measured by using 
another window method. For this process, the window area is centered around each endpoint 
(Fig. 2(D1)). The coordinates of the window area are used to take the ratio of the sum of the 
of pixels in the processed vessel map (Fig. 2(D2)) to sum of the pixels in the vessel skeleton 
map (Fig. 2(D3)). This ratio defines the width of the vessel segment. The window method is 
repeated for all parent and child vessels. 

The values of the widths are then used to calculate the width parameters, VBC, VWR1, 
and VWR2. The width parameters are summarized in equations Table 1, respectively. The 
output of the algorithm are the angle-based features, VBA (θ ), CBA1 ( 1α ), CBA 2 ( 2α ), 

and the width-based features, VBC, VWR1, VWR2. The algorithm runs iteratively for each 
identified branchpoints in an OCTA image. In the final step, the features are averaged and 
reported. 

Table 1. Quantitative Geometric Features 

Geometric Parameter Measurement 

VBA (θ) 

360= ° − −A B∠θ ∠ ∠  
Where: 

A∠  is the largest angle. 
B∠  is the second largest angle. 

CBA1 (α1) 1 180= ° − B∠α ∠  

CBA2 (α2) 2 180= ° − A∠α ∠  

VBC 
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B(i,j) represents the pixels occupied by the windowed vessel map, and 
S(i,j) represents the pixels occupied by the windowed vessel skeleton. 

VWR1 1  
1

 
= child width

VWR
parent width

 

VWR2 2  
2  

 
= child width

VWR
parent width

 

2.4 Statistical analysis 

The statistical analyses were performed using MATLAB (MathWorks, Natick, MA) and 
Microsoft Excel (Microsoft Corporation, Redmond, WA). All quantitative geometric features 
for different groups were compared using one-way, multi-label analysis of variance 
(ANOVA) to compare difference in mean values of the features among multiple groups. 
Following ANOVA, one versus one comparisons of the features between control, NoDR and 
NPDR stages (mild, moderate and severe) were performed using a Student t-test, with 
statistical significance was defined with a P value < 0.05. 

3. Results 

Our OCTA image database consisted of 120 OCTA images from 60 NPDR patients, 24 
OCTA images of 17 NoDR patients, and 40 images from 20 control subjects. We excluded 6 
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eyes due to poor OCTA images and another 4 eyes due to presence of other retinal diseases. 
Among the NPDR OCTAs, there were 20 sets each of mild, moderate, and severe NPDR (40 
OCTAs for each stage). There was no statistical significance in the distribution of age, sex 
and hypertension between control and DR groups. (ANOVA, P = 0.14; chi-square test, P = 
0.11 and P = 0.32, respectively). The demographics of our studied subjects are detailed in 
Table 2. 

Table 2. Demographics of control and DR subjects 

   Diabetic Retinopathy 

 Control NoDR Mild NPDR Moderate NPDR Severe NPDR 

Number of subjects 20 17 20 20 20 

Sex (male) 12 6 11 12 11 

Age (mean ± SD), 
years 

42 ± 9.8 66.4 ± 10.14 50.1 ± 12.61 50.8 ± 8.39 57.84 ± 10.37 

Age range, years 25-71 49 - 86 24-74 32-68 41-73 

Duration of diabetes, 
(mean ± SD), years 

- - 19.64 ± 13.27 16.13 ± 10.58 23.40 ± 11.95 

Diabetes Type (%, 
type II) 

- 100 100 100 100 

Insulin dependent 
(Y/N) 

- 14/3 7/13 12/8 15/5 

HbA1C, % - 5.9 ± 0.7 6.5 ± 0.6 7.3 ± 0.9 7.8 ± 1.3 

HTN prevalence, % 10 17 45 80 80 

a DR, diabetic retinopathy, SD, standard deviation, HbA1C, Glycated hemoglobin, HTN, hypertension 

3.1 Geometric feature analysis 

The detailed geometric feature analysis is summarized in Table 3. Among six geometric 
features of retinal vasculature in OCTA, VBA (θ), CBA1 (α1), VBC, and VWR1 were the 
most sensitive to DR stages. The angle-based parameters, VBA (θ), CBA1 (α1), and CBA2 
(α2) had positive correlation with severity of NPDR staging, while width-based parameters, 
VBC, VWR1, and VWR2, had negative correlation with severity of NPDR staging. In the 
case of control vs. NPDR, VBA (θ), CBA1 (α1), and CBA2 (α2) increased by 1.53%, 
0.522%, and 4.05%, respectively (Student’s t-test: no parameters had P<0.05). While for 
VBC, VWR1, and VWR2 decreased by 4.96%, 6.22%, and 1.93%, respectively (Student’s t-
test: P<0.01 for VBC and VWR1). The features, VBA (θ), CBA1 (α1), VBC, and VWR1, 
were the only features able to differentiate control, NoDR, and individual NPDR groups 
(ANOVA, P<0.05). 
  

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2498 



Table 3. Statistics of geometric features in control and DR groups 

Averaged Geometric Features ± std 

Parameters Control NoDR Mild Moderate Severe p-values 

VBA (θ) 80.83 ± 3.95 78.82 ± 3.07 82.95 ± 2.93 83.53 ± 4.59 80.79 ± 4.84 0.002 

CBA1 (α1) 57.69 ± 3.05 56.08 ± 2.95 58.72 ± 2.59 59.39 ± 3.27 56.86 ± 4.23 0.011 

CBA2 (α2) 23.13 ± 2.37 22.74 ± 2.09 24.24 ± 2.56 24.15 ± 3.5 23.94 ± 3.34 0.280 

VBC 1.20 ± 0.08 1.12 ± 0.09 1.15 ± 0.16 1.17 ± 0.13 1.12 ± 0.11 0.032 

VWR1 0.641 ± 0.06 0.610 ± 0.05 0.604 ± 0.06 0.604 ± 0.07 0.598 ± 0.06 0.047 

VWR2 0.815 ± 0.05 0.776 ± 0.04 0.810 ± 0.08 0.815 ± 0.08 0.785 ± 0.07 0.086 

 
Based on the ANOVA test, four features, i.e., VBA (θ), CBA1 (α1), VBC, and VWR1, 

had significance for group differentiation. A post hoc test was conducted to determine which 
groups were significantly differentiable. In this study, we followed a two tailed t-test, where 
p-values less than 0.05 or 0.01 are significant, and p-values less than 0.001 are highly 
significant. 

The individual t-test comparison for VBA (θ) is shown in Table 4. In the case of VBA (θ), 
control groups can be significantly differentiated from NoDR, mild, and moderate groups 
using individual t-test (Student’s t-test: P<0.05 for control vs NoDR, mild, and moderate 
NPDR). NoDR groups can be highly significantly differentiated from mild, and moderate 
groups (Student’s t-test: P<0.001 for NoDR vs mild, and moderate NPDR), and mild can be 
significantly differentiated from severe groups (Student’s t-test: P<0.05 for mild vs severe 
NPDR). 

Table 4. Results of student t-tests for individual group significance comparisons for 
branching angle, due to the significance of the ANOVA test. 

Individual comparison t-test: VBA (θ) 

Control NoDR Mild Moderate Severe 

Control 

NoDR <0.05 

Mild <0.05 <0.001 

Moderate <0.05 <0.001 0.652 

Severe 0.975 0.063 <0.05 0.05 

 
The individual t-test comparison for CBA1 (α1) is shown in Table 5. For CBA1 (α1), 

NoDR groups can be significantly differentiated from mild, and moderate groups (Student’s t-
test: P<0.01 for NoDR vs mild, and moderate NPDR), while severe groups can be 
significantly differentiated from mild, and moderate groups (Student’s t-test: P<0.05 for 
severe vs mild, and moderate NPDR). 
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Table 5. Results of student t-tests for individual group significance comparisons for child 
branching angle 1, due to the significance of the ANOVA test. 

Individual comparison t-test: CBA1 (α1) 

Control NoDR Mild Moderate Severe 

Control 

NoDR 0.056 

Mild 0.211 <0.01 

Moderate 0.081 <0.01 0.496 

Severe 0.356 0.417 <0.05 <0.05 

 
The individual t-test comparison for VBC is shown in Table 6. In case of VBC, control 

groups can be significantly differentiated from NoDR and severe groups (Student’s t-test: 
P<0.01 for control vs NoDR, and severe NPDR). No other groups can be differentiated from 
each other. 
 

Table 6. Results of student t-tests for individual group significance comparisons for vessel 
branching coefficient, due to the significance of the ANOVA test. 

Individual comparison t-test: VBC 

Control NoDR Mild Moderate Severe 

Control 

NoDR <0.01 

Mild 0.185 0.51 

Moderate 0.446 0.136 0.571 

Severe <0.01 0.994 0.519 0.144 

 
The individual t-test comparison for VWR1 is shown in Table 7. For VWR1, control 

groups can be significantly differentiated from NoDR, mild, and severe groups (Student’s t-
test P<0.05 for control vs NoDR, and mild NPDR, and P<0.01 for control vs severe NPDR). 
No other groups can be differentiated from each other. 

Table 7. Results of student t-tests for individual group significance comparisons for vessel 
width ratio 1, due to the significance of the ANOVA test. 

Individual comparison t-test: VWR1 

Control NoDr Mild Moderate Severe 

Control 

NoDR <0.05 

Mild <0.05 0.74 

Moderate 0.056 0.732 0.981 

Severe <0.01 0.396 0.719 0.752 

4. Discussion 

In summary, we developed a fully automated method to quantify geometric features, 
including VBA, CBA1, CBA2, VBC, VWR1, and VWR2. Comparative OCTA analysis of 
healthy control, diabetes with NoDR and NPDR subjects were conducted. 
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As stated by Murray’s principle, optimal blood flow transport is achieved with minimum 
energy and maximum vascular diffusion into surrounding tissue [3]. Changes to the vascular 
structures caused by DR and other diseases would decrease optimal transport of blood and 
nutrients. Therefore, quantitative geometric analysis can provide biomarkers for objective DR 
detection, progression monitoring, and treatment assessment. In this study, we quantified two 
categories of geometry, i.e., the angle (VBA, CBA1, CBA2) and width-based (VBC, VWR1, 
and VWR2) features, in OCTA. 

In principle, the angle-based features can quantify abnormal changes in blood transport 
optimality in DR. Using traditional fundus photography, previous studies has observed 
widening of VBA associated with DR [15,25,26]. However, fundus photography has limited 
resolution and contrast to disclose subtle changes, particularly in the foveal area where the 
capillary structures are small, at early onset of mild DR [27]. Moreover, previous studies used 
manual or semi-manual marking software to analyze the geometric features, which was time 
consuming with labor intensive involvement of experienced ophthalmologists [15,25,28]. By 
providing depth-resolved imaging capability, OCTA allows high resolution visualization of 
micro vasculatures in the retina [29,30]. Quantitative features, such as tortuosity, vessel 
density, etc., in OCTA have been used for evaluating DR [31,32], SCR [33,34], etc., 
However, quantitative analysis of vessel angle analysis is not yet established. In this study, 
we demonstrated quantitative analysis of VBA automatically. To further quantify the 
bifurcation, the automated algorithm could also quantify individual angles of the child 
vessels, i.e., CBA1 and CBA2, to evaluate the orientation changes from the parent vessel 
direction. We observed that VBA (θ), CBA1 (α1), and CBA2 (α2) increased. This indicates 
that both vessels contribute to the widening of the total VBA. 

Similarly, width-based features, such as VBC, also reflect transport optimality in retinal 
vasculature. Vessel width is related to the vessel cross sectional area and volume, and changes 
to the vessel width will affect the flow of blood and nutrients. Quantitative OCTA analysis of 
vessel caliber has been demonstrated [31,32]. However, comprehensive analysis of vessel 
branching properties is not yet validated. In this study, we verified VBC as a sensitive 
biomarker to DR detection and staging classification. By using ratio parameter VBC, the 
effect of image size and scale on quantitative measurement can be minimized. We also 
measured VWR1 and VWR2, width ratios of the individual child vessels to the width of the 
parent vessel, to provide further information such as contraction or dilation of child vessels. 
Based on the report by Adam et. al. [35], symmetrical bifurcations should have a branching 
coefficient of 1.26, and in case of non-symmetrical bifurcations, the VBC decrease from this 
optimal value. In our study, we observed that healthy control subjects had an average VBC of 
1.20, close to the theoretical optimal value. We also observed that the VBC decreases in DR 
patients compared to healthy control patients. Similarly, we observed decreased VWR1 and 
VWR2 values in DR patients. We speculate the decreased vessel widths and increased vessel 
branching angles are possibly due to remodeling related to ischemia and neovascularization. 
This remodeling could increase the shear stress at bifurcations resulting in increased vessel 
branching angles. Further functional imaging study of retinal hemodynamics may provide 
insights to a better understanding of these geometric parameter changes. 

It was observed that for NPDR, VBA widens from mild to moderate groups, but then 
narrows from moderate to severe (Table 3). This observation is consistent to previous study 
with traditional fundus photography [26]. Interestingly, we observed that VBA decreases 
from control to NoDR (Table 3), then increases from NoDR to moderate, and then decreases 
once more from moderate to severe. This phenomenon might reflect an auto-regulatory 
response due to increased metabolic demand in NoDR groups. Jiang et. al. [36] recently 
observed a similar trend in retinal thickness in NoDR OCT. These unique OCTA features 
might reflect subtle vascular abnormalities that cannot be revealed in traditional fundus 
photography. 
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5. Conclusion 

In conclusion, an automated algorithm was developed to quantify six geometric features, 
including VBA (θ), CBA1 (α1), CBA2 (α2), VBC, VWR1, and VWR2. Comparative analysis 
of healthy control, diabetes with NoDR and DR subjects revealed that the VBA, CBA1 (α1), 
VBC, and VWR1 showed significant difference among control, NoDR and NPDR groups. 
The study demonstrates the potential of using quantitative geometric features as objective bio-
marker for DR detection, progression monitoring, and treatment assessment. 
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